
CS 335: Instruction
Scheduling

Swarnendu Biswas

Semester 2019-2020-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Sensitivity to Instruction Order

• Order of instruction execution has a significant effect on program
performance
• Different operations have different latencies

• Same operation may have different latencies

• Instruction scheduling is the task of ordering the operations to make
effective use of processor resources
• Input to the instruction scheduler is an unordered or partially ordered list of

operations in say the target machine’s assembly language

• Output is an order on the list of operations

CS 335 Swarnendu Biswas

Instruction Scheduling

• Compiler reorders operations in the compiled code in an attempt to
decrease its running time

• Scheduler assumes a fixed set of operations and does not rewrite code
• May add nops to maintain dependence

• Scheduler assumes a fixed allocation of values to registers
• May rename registers but does not change allocation decisions

• Should avoid increasing the lifetime of values since it may lead to register spills

CS 335 Swarnendu Biswas

Instruction
Scheduler

Reordered
code

Original
code

Overlapping Instructions

• Processors overlap instruction execution to make use of a finite set of
functional units

• Processor stalls an instruction until its operands are available
• Scheduler can reorder instructions to minimize the number of stalls

• Processor can also continue executing the instruction with wrong
operands
• Will need support for re-execution when correct operands are available

• Need to maintain sufficient distance between the definition and the uses of
the operand

CS 335 Swarnendu Biswas

Issuing Instructions

• Many processors can issue multiple operations per cycle
• Superscalar processor can issue distinct operations to multiple distinct

functional units in a single cycle

• VLIW processor issue an operation for each functional unit in each cycle

• Superscalar processors
• Monitor a small window in the instruction stream

• Choose operations that can execute on available units

• Assign ready operations to functional units.

• Window size is relatively larger for out-of-order superscalar
processors

CS 335 Swarnendu Biswas

Instruction Scheduling

• A processor that relies on the compiler to insert NOPs for correctness
is called a statically scheduled processor
• Scheduler checks the availability of functional units

• A processor that uses interlocks to ensure correctness is a
dynamically scheduled processor
• An interlock is a hardware mechanism to detect premature issue and

introduces a delay

• Scheduler checks availability of operands

CS 335 Swarnendu Biswas

Instruction Scheduling Example

Start Operations

1 LOAD 𝑅𝐴𝑅𝑃, @a ⇒ 𝑅1

4 ADD 𝑅1, 𝑅1 ⇒ 𝑅1

5 LOAD 𝑅𝐴𝑅𝑃, @b ⇒ 𝑅2

8 MUL 𝑅1, 𝑅2 ⇒ 𝑅1

10 LOAD 𝑅𝐴𝑅𝑃, @c ⇒ 𝑅2

13 MUL 𝑅1, 𝑅2 ⇒ 𝑅1

15 LOAD 𝑅𝐴𝑅𝑃, @d ⇒ 𝑅2

18 MUL 𝑅1, 𝑅2 ⇒ 𝑅1

20 STORE 𝑅1 ⇒ 𝑅𝐴𝑅𝑃, @a

Start Operations

1 LOAD 𝑅𝐴𝑅𝑃, @a ⇒ 𝑅1

2 LOAD 𝑅𝐴𝑅𝑃, @b ⇒ 𝑅2

3 LOAD 𝑅𝐴𝑅𝑃, @c ⇒ 𝑅3

4 ADD 𝑅1, 𝑅1 ⇒ 𝑅1

5 MUL 𝑅1, 𝑅2 ⇒ 𝑅1

6 LOAD 𝑅𝐴𝑅𝑃, @d ⇒ 𝑅2

7 MUL 𝑅1, 𝑅3 ⇒ 𝑅1

9 MUL 𝑅1, 𝑅2 ⇒ 𝑅1

11 STORE 𝑅1 ⇒ 𝑅𝐴𝑅𝑃, @a

CS 335 Swarnendu Biswas

Dependence Graph

• Given a basic block 𝐵, its dependence graph is 𝐷 = (𝑁, 𝐸)
• 𝐷 has a node for each operation in 𝐵

• An edge in 𝐷 connects two nodes 𝑛1 and 𝑛2 if 𝑛2 uses the result of 𝑛1
• Edges represent flow of values

• 𝐷 is also called a precedence graph

• Each node 𝑛 has two attributes
• Operation type – functional unit on which the operation must execute

• Delay – number of cycles to complete

CS 335 Swarnendu Biswas

Example of a Dependence Graph

CS 335 Swarnendu Biswas

Start Operations Symbol

1 LOAD 𝑅𝐴𝑅𝑃, @a ⇒ 𝑅1 a

4 ADD 𝑅1, 𝑅1 ⇒ 𝑅1 b

5 LOAD 𝑅𝐴𝑅𝑃, @b ⇒ 𝑅2 c

8 MUL 𝑅1, 𝑅2 ⇒ 𝑅1 d

10 LOAD 𝑅𝐴𝑅𝑃, @c ⇒ 𝑅2 e

13 MUL 𝑅1, 𝑅2 ⇒ 𝑅1 f

15 LOAD 𝑅𝐴𝑅𝑃, @d ⇒ 𝑅2 g

18 MUL 𝑅1, 𝑅2 ⇒ 𝑅1 h

20 STORE 𝑅1 ⇒ 𝑅𝐴𝑅𝑃, @a i

a

b

d

c

f

e

g

h

i

Nodes with no predecessors
are called leaves

Nodes with no successors
are called roots

Instruction Scheduling

• A schedule 𝑆 maps each node 𝑛 ∈ 𝑁 to a nonnegative integer that
denotes the cycle in which it should be issued

• An instruction 𝑖 can have multiple operations
• Operations are denoted by 𝑛 𝑆 𝑛 == 𝑖 }

• Constraints
i. 𝑆 𝑛 ≥ 1, with at least one operation 𝑛′ such that 𝑆 𝑛′ = 1

ii. If (𝑛1, 𝑛2) ∈ 𝐸, then 𝑆 𝑛1 + 𝑑𝑒𝑙𝑎𝑦 𝑛1 ≤ 𝑆(𝑛2)

iii. Each instruction contains no more operations of each type than the target
machine can issue in a cycle

CS 335 Swarnendu Biswas

Instruction Scheduling

• Given a well-formed schedule, the length
of the schedule is the cycle number in
which the last operation completes

• Assuming first instruction is issued at cycle
1, schedule length is 𝐿 𝑆 =
max
𝑛∈𝑁

(𝑆 𝑛 + 𝑑𝑒𝑙𝑎𝑦 𝑛)

• A schedule 𝑆𝑖 is time optimal if 𝐿 𝑆𝑖 ≤
𝐿 𝑆𝑗 ∀ 𝑆𝑗 ≠ 𝑆𝑖

• Critical path is the longest latency path
through 𝐷

CS 335 Swarnendu Biswas

a13

b10

d9

c12

f7

e10

g8

h5

i3

Instruction Scheduling

• a is on the critical path, so we should
schedule a first

• c can be the next, since it now lies on the
longest path

• Better to schedule e before b

CS 335 Swarnendu Biswas

a13

b10

d9

c12

f7

e10

g8

h5

i3

Possible schedule = ???

Instruction Scheduling

• a is on the critical path, so we should
schedule a first

• c can be the next, since it now lies on the
longest path

• Better to schedule e before b

CS 335 Swarnendu Biswas

a13

b10

d9

c12

f7

e10

g8

h5

i3

Possible schedule = acebdgfhi

Instruction Scheduling

CS 335 Swarnendu Biswas

Possible schedule = acebdgfhi?

Start Operations Symbol

1 LOAD 𝑅𝐴𝑅𝑃, @a ⇒ 𝑅1 a

2 LOAD 𝑅𝐴𝑅𝑃, @b ⇒ 𝑅2 c

3 LOAD 𝑅𝐴𝑅𝑃, @c ⇒ 𝑅2 e

4 ADD 𝑅1, 𝑅1 ⇒ 𝑅1 b

5 MUL 𝑅1, 𝑅2 ⇒ 𝑅1 d

6 LOAD 𝑅𝐴𝑅𝑃, @d ⇒ 𝑅2 g

7 MUL 𝑅1, 𝑅3 ⇒ 𝑅1 f

9 MUL 𝑅1, 𝑅2 ⇒ 𝑅1 h

11 STORE 𝑅1 ⇒ 𝑅𝐴𝑅𝑃, @a i

Instruction Scheduling

CS 335 Swarnendu Biswas

Possible schedule = acebdgfhi?

Start Operations Symbol

1 LOAD 𝑅𝐴𝑅𝑃, @a ⇒ 𝑅1 a

2 LOAD 𝑅𝐴𝑅𝑃, @b ⇒ 𝑅2 c

3 LOAD 𝑅𝐴𝑅𝑃, @c ⇒ 𝑅2 e

4 ADD 𝑅1, 𝑅1 ⇒ 𝑅1 b

5 MUL 𝑅1, 𝑅2 ⇒ 𝑅1 d

6 LOAD 𝑅𝐴𝑅𝑃, @d ⇒ 𝑅2 g

7 MUL 𝑅1, 𝑅3 ⇒ 𝑅1 f

9 MUL 𝑅1, 𝑅2 ⇒ 𝑅1 h

11 STORE 𝑅1 ⇒ 𝑅𝐴𝑅𝑃, @a i

• Both c and e define 𝑅2, and d uses 𝑅2
• Compiler cannot move e before d

without renaming

Dealing with Antidependence

• Operation 𝑥 is antidependent on operation 𝑦 if 𝑥 precedes 𝑦 and 𝑦
defines a value used in 𝑥
• Reversing their order of execution could cause 𝑥 to compute a different value

• How can a scheduler can deal with antidependences?
• Identify antidependences and respect the constraints in the generated

schedule
• Restricts the number of possible schedules a compiler can generate

• Rename values to avoid antidependences
• Increasing variable lifetime can lead to register spills

CS 335 Swarnendu Biswas

Limitations in Scheduling

Start Operations

1 LOAD 𝑅𝐴𝑅𝑃, @a ⇒ 𝑅1

4 MUL 𝑅1, 𝑅1 ⇒ 𝑅1

6 MUL 𝑅1, 𝑅1 ⇒ 𝑅1

8 MUL 𝑅1, 𝑅1 ⇒ 𝑅1

10 MUL 𝑅1, 𝑅1 ⇒ 𝑅1

12 STORE 𝑅1 ⇒ 𝑅𝐴𝑅𝑃, @x

CS 335 Swarnendu Biswas

• Adjacent code has dependences
that cannot be avoid during
scheduling

• Earlier passes may refactor the
code to expose parallelism
• (𝑎2)2× (𝑎2)2

• Can proceed in parallel if there are
more than one multiplication unit

Challenges in Scheduling

• Scheduler needs to find a mapping between one or more operations
and the clock cycle when they can start
• A choice influences all reachable nodes

• Instruction scheduling is NP-complete

CS 335 Swarnendu Biswas

List Scheduling

CS 335 Swarnendu Biswas

List Scheduling

• Greedy, heuristic-based approach to schedule operations in a basic
block

• Steps in applying list scheduling
i. Rename values to avoid antidependences

ii. Build a dependence graph 𝐷

iii. Assign priorities to each operation

iv. Iteratively select an operation for scheduling

CS 335 Swarnendu Biswas

Steps in List Scheduling

i. Rename values to avoid antidependences (optional step)
• Each definition receives a unique name

• Allows the scheduler more flexibility in identifying schedules

ii. Build a dependence graph 𝐷
• Scheduler traverses the block from bottom to top

• Each node represents a new value

• Each edge is annotated with the latency of the current operation

CS 335 Swarnendu Biswas

Steps in List Scheduling

iii. Assign priorities to each operation
• Scheduler computes several different scores for each node

• Length of the longest latency-weighted path from the node to a root in 𝐷

• Priorities are used for ordering and breaking ties

iv. Iteratively select an operation for scheduling
• Start in the first cycle for the basic block

• At each cycle, choose as many operations as possible to issue

CS 335 Swarnendu Biswas

List Scheduling Algorithm

𝑐𝑦𝑐𝑙𝑒 = 1

𝑅𝑒𝑎𝑑𝑦 = { leaves of 𝐷 }

𝐴𝑐𝑡𝑖𝑣𝑒 = {𝜙}

while 𝑅𝑒𝑎𝑑𝑦 ∪ 𝐴𝑐𝑡𝑖𝑣𝑒 ≠ 𝜙

for each 𝑜𝑝 ∈ 𝐴𝑐𝑡𝑖𝑣𝑒

if 𝑆(𝑜𝑝) + 𝑑𝑒𝑙𝑎𝑦(𝑜𝑝) < 𝑐𝑦𝑐𝑙𝑒

𝐴𝑐𝑡𝑖𝑣𝑒 = 𝐴𝑐𝑡𝑖𝑣𝑒 − 𝑜𝑝

for each successor 𝑠 of 𝑜𝑝

if 𝑠 is 𝑅𝑒𝑎𝑑𝑦

𝑅𝑒𝑎𝑑𝑦 = 𝑅𝑒𝑎𝑑𝑦 ∪ 𝑠

if 𝑅𝑒𝑎𝑑𝑦 ≠ 𝜙

𝑅𝑒𝑎𝑑𝑦 = 𝑅𝑒𝑎𝑑𝑦 − 𝑜𝑝

𝑆(𝑜𝑝) = 𝑐𝑦𝑐𝑙𝑒

add 𝑜𝑝 to 𝐴𝑐𝑡𝑖𝑣𝑒

𝑐𝑦𝑐𝑙𝑒 = 𝑐𝑦𝑐𝑙𝑒 + 1

CS 335 Swarnendu Biswas

List Scheduling Algorithm

• At each time step
• the algorithm accounts for operations completed in the previous cycle

• schedules an operation for the current cycle

• increments 𝑐𝑦𝑐𝑙𝑒

• Block-ending jump must be scheduled such that it does not modify
the program counter
• Two-cycle branch must not be scheduled earlier than the penultimate cycle

• If 𝑖 is the block-ending branch, it cannot be scheduled earlier than cycle
𝐿 𝑆 + 1 − 𝑑𝑒𝑙𝑎𝑦(𝑖)

CS 335 Swarnendu Biswas

Thoughts on the List Scheduling Algorithm

• If 𝑅𝑒𝑎𝑑𝑦 = 1, then the generated schedule must be optimal

• If 𝑅𝑒𝑎𝑑𝑦 > 1, then operation with highest priority should be
chosen

CS 335 Swarnendu Biswas

Scheduling Operations with Variable Delays

• Memory operations often have variable delays
• Assuming worst-case delay can keep the processor idle

• Assuming best-case delay will require stalls on a cache miss

• Compilers follow balanced scheduling
• Calculate individual latency for each load based on the amount of instruction-

level parallelism available to cover the load’s latency

• Schedule the load considering the surrounding code

• Distribute the available parallelism across the loads in the block

CS 335 Swarnendu Biswas

Computing Delays for Load Operations

for each load operation l in the block

delay(l) = 1

for each operation i in D

let Di be the nodes and edges in D independent of i

for each connected component C of Di do

find the maximal number of loads N on any path through C

for each load operation l in C

delay(l) = delay(l) + delay(i)/N

CS 335 Swarnendu Biswas

Other Considerations

• Algorithm assumes only one operation is issued per cycle
• The algorithm should consider one operation per functional unit per cycle

• Some operations can execute on multiple functional units while
others cannot
• Schedule the more-constrained units before the less-constrained units

• Operands computed in predecessor blocks may not be available
during the first cycle at block boundaries

CS 335 Swarnendu Biswas

Other Priority Measures for Tie Breaking

• A node’s rank is the number of immediate successors it has in 𝐷
• Encourages the scheduler to pursue many distinct paths through 𝐷, similar to

a breadth-first approach

• A node’s rank is the total number of descendants it has in 𝐷

• A node’s rank is equal to its 𝑑𝑒𝑙𝑎𝑦
• Schedules long-latency operations as soon as possible

• A node’s rank is equal to the number of operands for which this
operation is the last use
• Moves last uses closer to their definitions to decrease demand for registers

CS 335 Swarnendu Biswas

Example of Forward List Scheduling

CS 335 Swarnendu Biswas

Opcode loadI lshift add addI cmp store

Latency 1 1 2 1 1 4

cbr1

cmp2 store15 store25 store35 store45 store55

loadI18 lshift8 loadI48loadI38loadI28

add17 add27 add37 add47 addI6

Example of Forward List Scheduling

CS 335 Swarnendu Biswas

Opcode loadI lshift add addI cmp store

Latency 1 1 2 1 1 4

cbr1

cmp2 store15 store25 store35 store45 store55

loadI18 lshift8 loadI48loadI38loadI28

add17 add27 add37 add47 addI6

Integer Integer Memory

1

2

3

4

5

6

7

Example of Forward List Scheduling

CS 335 Swarnendu Biswas

Opcode loadI lshift add addI cmp store

Latency 1 1 2 1 1 4

cbr1

cmp2 store15 store25 store35 store45 store55

loadI18 lshift8 loadI48loadI38loadI28

add17 add27 add37 add47 addI6

Integer Integer Memory

1 loadI1 lshift

2 loadI2 loadI3

3 loadI4 add1

4 add2 add3

5 add4 addI store1

6 cmp store2

7 store3

8 store4

9 store5

10

11

12

13 cbr

Example of Backward List Scheduling

CS 335 Swarnendu Biswas

Opcode loadI lshift add addI cmp store

Latency 1 1 2 1 1 4

cbr1

cmp2 store15 store25 store35 store45 store55

loadI18 lshift8 loadI48loadI38loadI28

add17 add27 add37 add47 addI6

Integer Integer Memory

cmp

cbr

Example of Backward List Scheduling

CS 335 Swarnendu Biswas

Opcode loadI lshift add addI cmp store

Latency 1 1 2 1 1 4

cbr1

cmp2 store15 store25 store35 store45 store55

loadI18 lshift8 loadI48loadI38loadI28

add17 add27 add37 add47 addI6

Integer Integer Memory

1 loadI4

2 addI lshift

3 add4 loadI3

4 add3 loadI2 store5

5 add2 loadI1 store4

6 add1 store3

7 store2

8 store1

9

10

11 cmp

12 cbr

Does OOO Eliminate the Need for Instruction
Scheduling?
• Many modern processors support out-of-order (OOO) execution

• The dynamically-scheduled processor maintains a portion of the dependence
graph at run time to identify when each instruction can execute

• When can OOO processor improve on a static schedule?
• Run-time information is more precise than the assumptions made by the

scheduler
• An operand at a block boundary is available before its worst-case time
• More precise estimates for variable-latency operations
• Can precisely identify load-store dependences because the hardware knows actual

runtime addresses while a static scheduler does not

• The OOO processor might issue an operation earlier than its position in the
static schedule

CS 335 Swarnendu Biswas

Does OOO Eliminate the Need for Instruction
Scheduling?
• OOO execution does not eliminate the need for instruction scheduling

because the lookahead window is finite
• Consider a string of 100 integer instructions followed by 100 floating-point

instructions and a lookahead window of 50 instructions It may, however,

• OOO execution helps the compiler by improving good, but
nonoptimal, schedules

CS 335 Swarnendu Biswas

Regional Scheduling

CS 335 Swarnendu Biswas

Extending Beyond BBs

• Limiting analysis to BBs is simple and convenient

• However, extending the window of scheduling beyond BBs can
improve the code quality
• Span can be multiple BBs in a procedure

• Goal is to increase code that can be scheduled together

• Almost all proposed ideas use the list scheduling algorithm at its core

CS 335 Swarnendu Biswas

Extended BB (EBB)

• An extended BB is a set of BBs
{𝐵1, 𝐵2, … , 𝐵𝑛} such that
• 𝐵1 has multiple predecessors

• Any other block 𝐵𝑖 has exactly one
predecessor 𝐵𝑗 in the EBB

CS 335 Swarnendu Biswas

𝐵6

𝐵5𝐵4 j
k

h
i

k

a
b
c
d

e
f

g

𝐵1

𝐵2 𝐵3

Scheduling EBBs

• Compilers process paths in an EBB for scheduling
• For example, {𝐵1, 𝐵2, 𝐵4} and {𝐵1, 𝐵3}

• Challenges
• Compiler must reason about any code motion performed on one path on

other paths
• Compiler can move 𝑐 from 𝐵1 to 𝐵2 to improve the performance of the first path
• Compiler must compensate, insert 𝑐 into 𝐵3

• Similarly, a compiler might move 𝑓 from 𝐵2 to 𝐵1
• This can lead to erroneous output in the path {𝐵1, 𝐵3}
• Either rename the output of 𝑓 or insert an undo operation

• Scheduler aims to mitigate the number and frequency of
compensation code

CS 335 Swarnendu Biswas

Trace Scheduling

• Goal is to construct maximal-
length acyclic paths through a
CFG
• Applies the list scheduling

algorithm to those paths or traces

• Trace is an acyclic path through
the CFG

• Compiler aims to schedule hot
paths before cold paths
• Requires access to profile

information

CS 335 Swarnendu Biswas

7 3

5

𝐵6

𝐵5𝐵4 j
k

h
i

k

a
b
c
d

e
f

g

𝐵1

𝐵2 𝐵3

2 3

5 5

Trace Scheduling

• Selecting edges to form a trace can be greedy
• For example, a possible trace is {𝐵1, 𝐵2, 𝐵4, 𝐵6}

• Trace construction stops when it runs of edges or there is a loop-closing
branch

• Scheduler applies the list scheduling algorithm to traces
• Schedules a trace, and moves on to the next most-frequently executed trace

• Note there may be entry points in the middle of a trace
• Blocks may have multiple predecessors

• Compilers have to be careful performing code motion across such blocks

CS 335 Swarnendu Biswas

Scheduling with BB Cloning

• Join or merge BBs limit
extending EBB or trace
scheduling

• Cloning BBs allows creating
longer join-free paths

• After cloning, the entire graph
on the right is an EBB
• Schedule {𝐵1, 𝐵2, 𝐵4, 𝐵6} if hot

(say)
• Then, can schedule either

𝐵5, 𝐵
′
6 or {𝐵3, 𝐵

′
5, 𝐵

′′
6}

CS 335 Swarnendu Biswas

𝐵6

𝐵5𝐵4 j
k

h
i

k

a
b
c
d

e
f

g

𝐵1

𝐵2 𝐵3

k

j
k

k

𝐵′
5

𝐵′
6 𝐵′′

6

References

• K. Cooper and L. Torczon. Engineering a Compiler, 2nd edition, Chapter 12.

CS 335 Swarnendu Biswas

