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Sensitivity to Instruction Order

• Order of instruction execution has a significant effect on program 
performance
• Different operations have different latencies

• Same operation may have different latencies

• Instruction scheduling is the task of ordering the operations to make 
effective use of processor resources
• Input to the instruction scheduler is an unordered or partially ordered list of 

operations in say the target machine’s assembly language

• Output is an order on the list of operations
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Instruction Scheduling

• Compiler reorders operations in the compiled code in an attempt to 
decrease its running time

• Scheduler assumes a fixed set of operations and does not rewrite code 
• May add nops to maintain dependence

• Scheduler assumes a fixed allocation of values to registers 
• May rename registers but does not change allocation decisions

• Should avoid increasing the lifetime of values since it may lead to register spills
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Overlapping Instructions

• Processors overlap instruction execution to make use of a finite set of 
functional units

• Processor stalls an instruction until its operands are available
• Scheduler can reorder instructions to minimize the number of stalls

• Processor can also continue executing the instruction with wrong 
operands
• Will need support for re-execution when correct operands are available

• Need to maintain sufficient distance between the definition and the uses of 
the operand
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Issuing Instructions

• Many processors can issue multiple operations per cycle
• Superscalar processor can issue distinct operations to multiple distinct 

functional units in a single cycle

• VLIW processor issue an operation for each functional unit in each cycle

• Superscalar processors 
• Monitor a small window in the instruction stream

• Choose operations that can execute on available units 

• Assign ready operations to functional units.

• Window size is relatively larger for out-of-order superscalar 
processors
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Instruction Scheduling

• A processor that relies on the compiler to insert NOPs for correctness 
is called a statically scheduled processor
• Scheduler checks the availability of functional units

• A processor that uses interlocks to ensure correctness is a 
dynamically scheduled processor
• An interlock is a hardware mechanism to detect premature issue and 

introduces a delay

• Scheduler checks availability of operands
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Instruction Scheduling Example

Start Operations

1 LOAD  𝑅𝐴𝑅𝑃, @a ⇒ 𝑅1

4 ADD   𝑅1, 𝑅1 ⇒ 𝑅1

5 LOAD  𝑅𝐴𝑅𝑃, @b ⇒ 𝑅2

8 MUL   𝑅1, 𝑅2 ⇒ 𝑅1

10 LOAD  𝑅𝐴𝑅𝑃, @c ⇒ 𝑅2

13 MUL   𝑅1, 𝑅2 ⇒ 𝑅1

15 LOAD  𝑅𝐴𝑅𝑃, @d ⇒ 𝑅2

18 MUL   𝑅1, 𝑅2 ⇒ 𝑅1

20 STORE 𝑅1 ⇒ 𝑅𝐴𝑅𝑃, @a

Start Operations

1 LOAD  𝑅𝐴𝑅𝑃, @a ⇒ 𝑅1

2 LOAD  𝑅𝐴𝑅𝑃, @b ⇒ 𝑅2

3 LOAD  𝑅𝐴𝑅𝑃, @c ⇒ 𝑅3

4 ADD   𝑅1, 𝑅1 ⇒ 𝑅1

5 MUL   𝑅1, 𝑅2 ⇒ 𝑅1

6 LOAD  𝑅𝐴𝑅𝑃, @d ⇒ 𝑅2

7 MUL   𝑅1, 𝑅3 ⇒ 𝑅1

9 MUL   𝑅1, 𝑅2 ⇒ 𝑅1

11 STORE 𝑅1 ⇒ 𝑅𝐴𝑅𝑃, @a
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Dependence Graph

• Given a basic block 𝐵, its dependence graph is 𝐷 = (𝑁, 𝐸)
• 𝐷 has a node for each operation in 𝐵

• An edge in 𝐷 connects two nodes 𝑛1 and 𝑛2 if 𝑛2 uses the result of 𝑛1
• Edges represent flow of values

• 𝐷 is also called a precedence graph

• Each node 𝑛 has two attributes
• Operation type – functional unit on which the operation must execute

• Delay – number of cycles to complete
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Example of a Dependence Graph
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Start Operations Symbol

1 LOAD  𝑅𝐴𝑅𝑃, @a ⇒ 𝑅1 a

4 ADD   𝑅1, 𝑅1 ⇒ 𝑅1 b

5 LOAD  𝑅𝐴𝑅𝑃, @b ⇒ 𝑅2 c

8 MUL   𝑅1, 𝑅2 ⇒ 𝑅1 d

10 LOAD  𝑅𝐴𝑅𝑃, @c ⇒ 𝑅2 e

13 MUL   𝑅1, 𝑅2 ⇒ 𝑅1 f

15 LOAD  𝑅𝐴𝑅𝑃, @d ⇒ 𝑅2 g

18 MUL   𝑅1, 𝑅2 ⇒ 𝑅1 h

20 STORE 𝑅1 ⇒ 𝑅𝐴𝑅𝑃, @a i

a

b

d

c

f

e

g

h

i

Nodes with no predecessors 
are called leaves

Nodes with no successors 
are called roots



Instruction Scheduling

• A schedule 𝑆 maps each node 𝑛 ∈ 𝑁 to a nonnegative integer that 
denotes the cycle in which it should be issued

• An instruction 𝑖 can have multiple operations 
• Operations are denoted by 𝑛 𝑆 𝑛 == 𝑖 }

• Constraints
i. 𝑆 𝑛 ≥ 1, with at least one operation 𝑛′ such that 𝑆 𝑛′ = 1

ii. If (𝑛1, 𝑛2) ∈ 𝐸, then 𝑆 𝑛1 + 𝑑𝑒𝑙𝑎𝑦 𝑛1 ≤ 𝑆(𝑛2)

iii. Each instruction contains no more operations of each type than the target 
machine can issue in a cycle
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Instruction Scheduling

• Given a well-formed schedule, the length 
of the schedule is the cycle number in 
which the last operation completes

• Assuming first instruction is issued at cycle 
1, schedule length is 𝐿 𝑆 =
max
𝑛∈𝑁

(𝑆 𝑛 + 𝑑𝑒𝑙𝑎𝑦 𝑛 )

• A schedule 𝑆𝑖 is time optimal if 𝐿 𝑆𝑖 ≤
𝐿 𝑆𝑗 ∀ 𝑆𝑗 ≠ 𝑆𝑖

• Critical path is the longest latency path 
through 𝐷
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Instruction Scheduling

• a is on the critical path, so we should 
schedule a first

• c can be the next, since it now lies on the 
longest path

• Better to schedule e before b
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Instruction Scheduling

• a is on the critical path, so we should 
schedule a first

• c can be the next, since it now lies on the 
longest path

• Better to schedule e before b
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Instruction Scheduling
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Possible schedule = acebdgfhi?

Start Operations Symbol

1 LOAD  𝑅𝐴𝑅𝑃, @a ⇒ 𝑅1 a

2 LOAD  𝑅𝐴𝑅𝑃, @b ⇒ 𝑅2 c

3 LOAD  𝑅𝐴𝑅𝑃, @c ⇒ 𝑅2 e

4 ADD   𝑅1, 𝑅1 ⇒ 𝑅1 b

5 MUL   𝑅1, 𝑅2 ⇒ 𝑅1 d

6 LOAD  𝑅𝐴𝑅𝑃, @d ⇒ 𝑅2 g

7 MUL   𝑅1, 𝑅3 ⇒ 𝑅1 f

9 MUL   𝑅1, 𝑅2 ⇒ 𝑅1 h

11 STORE 𝑅1 ⇒ 𝑅𝐴𝑅𝑃, @a i



Instruction Scheduling
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Possible schedule = acebdgfhi?

Start Operations Symbol

1 LOAD  𝑅𝐴𝑅𝑃, @a ⇒ 𝑅1 a

2 LOAD  𝑅𝐴𝑅𝑃, @b ⇒ 𝑅2 c

3 LOAD  𝑅𝐴𝑅𝑃, @c ⇒ 𝑅2 e

4 ADD   𝑅1, 𝑅1 ⇒ 𝑅1 b

5 MUL   𝑅1, 𝑅2 ⇒ 𝑅1 d

6 LOAD  𝑅𝐴𝑅𝑃, @d ⇒ 𝑅2 g

7 MUL   𝑅1, 𝑅3 ⇒ 𝑅1 f

9 MUL   𝑅1, 𝑅2 ⇒ 𝑅1 h

11 STORE 𝑅1 ⇒ 𝑅𝐴𝑅𝑃, @a i

• Both c and e define 𝑅2, and d uses 𝑅2
• Compiler cannot move e before d 

without renaming



Dealing with Antidependence

• Operation 𝑥 is antidependent on operation 𝑦 if 𝑥 precedes 𝑦 and 𝑦
defines a value used in 𝑥
• Reversing their order of execution could cause 𝑥 to compute a different value

• How can a scheduler can deal with antidependences?
• Identify antidependences and respect the constraints in the generated 

schedule
• Restricts the number of possible schedules a compiler can generate

• Rename values to avoid antidependences
• Increasing variable lifetime can lead to register spills 
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Limitations in Scheduling

Start Operations

1 LOAD  𝑅𝐴𝑅𝑃, @a ⇒ 𝑅1

4 MUL   𝑅1, 𝑅1 ⇒ 𝑅1

6 MUL   𝑅1, 𝑅1 ⇒ 𝑅1

8 MUL   𝑅1, 𝑅1 ⇒ 𝑅1

10 MUL   𝑅1, 𝑅1 ⇒ 𝑅1

12 STORE 𝑅1 ⇒ 𝑅𝐴𝑅𝑃, @x
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• Adjacent code has dependences 
that cannot be avoid during 
scheduling

• Earlier passes may refactor the 
code to expose parallelism
• (𝑎2)2× (𝑎2)2

• Can proceed in parallel if there are 
more than one multiplication unit



Challenges in Scheduling

• Scheduler needs to find a mapping between one or more operations 
and the clock cycle when they can start
• A choice influences all reachable nodes

• Instruction scheduling is NP-complete 
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List Scheduling
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List Scheduling

• Greedy, heuristic-based approach to schedule operations in a basic 
block

• Steps in applying list scheduling
i. Rename values to avoid antidependences

ii. Build a dependence graph 𝐷

iii. Assign priorities to each operation

iv. Iteratively select an operation for scheduling
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Steps in List Scheduling 

i. Rename values to avoid antidependences (optional step)
• Each definition receives a unique name

• Allows the scheduler more flexibility in identifying schedules

ii. Build a dependence graph 𝐷
• Scheduler traverses the block from bottom to top

• Each node represents a new value

• Each edge is annotated with the latency of the current operation
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Steps in List Scheduling 

iii. Assign priorities to each operation
• Scheduler computes several different scores for each node

• Length of the longest latency-weighted path from the node to a root in 𝐷

• Priorities are used for ordering and breaking ties

iv. Iteratively select an operation for scheduling
• Start in the first cycle for the basic block

• At each cycle, choose as many operations as possible to issue
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List Scheduling Algorithm

𝑐𝑦𝑐𝑙𝑒 = 1

𝑅𝑒𝑎𝑑𝑦 = { leaves of 𝐷 }

𝐴𝑐𝑡𝑖𝑣𝑒 = {𝜙}

while 𝑅𝑒𝑎𝑑𝑦 ∪ 𝐴𝑐𝑡𝑖𝑣𝑒 ≠ 𝜙

for each 𝑜𝑝 ∈ 𝐴𝑐𝑡𝑖𝑣𝑒

if 𝑆(𝑜𝑝) + 𝑑𝑒𝑙𝑎𝑦(𝑜𝑝) < 𝑐𝑦𝑐𝑙𝑒

𝐴𝑐𝑡𝑖𝑣𝑒 = 𝐴𝑐𝑡𝑖𝑣𝑒 − 𝑜𝑝

for each successor 𝑠 of 𝑜𝑝

if 𝑠 is 𝑅𝑒𝑎𝑑𝑦

𝑅𝑒𝑎𝑑𝑦 = 𝑅𝑒𝑎𝑑𝑦 ∪ 𝑠

if 𝑅𝑒𝑎𝑑𝑦 ≠ 𝜙

𝑅𝑒𝑎𝑑𝑦 = 𝑅𝑒𝑎𝑑𝑦 − 𝑜𝑝

𝑆(𝑜𝑝) = 𝑐𝑦𝑐𝑙𝑒

add 𝑜𝑝 to 𝐴𝑐𝑡𝑖𝑣𝑒

𝑐𝑦𝑐𝑙𝑒 = 𝑐𝑦𝑐𝑙𝑒 + 1

CS 335 Swarnendu Biswas



List Scheduling Algorithm

• At each time step 
• the algorithm accounts for operations completed in the previous cycle

• schedules an operation for the current cycle 

• increments 𝑐𝑦𝑐𝑙𝑒

• Block-ending jump must be scheduled such that it does not modify 
the program counter
• Two-cycle branch must not be scheduled earlier than the penultimate cycle

• If 𝑖 is the block-ending branch, it cannot be scheduled earlier than cycle 
𝐿 𝑆 + 1 − 𝑑𝑒𝑙𝑎𝑦(𝑖)
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Thoughts on the List Scheduling Algorithm

• If 𝑅𝑒𝑎𝑑𝑦 = 1, then the generated schedule must be optimal

• If 𝑅𝑒𝑎𝑑𝑦 > 1, then operation with highest priority should be 
chosen
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Scheduling Operations with Variable Delays

• Memory operations often have variable delays
• Assuming worst-case delay can keep the processor idle 

• Assuming best-case delay will require stalls on a cache miss

• Compilers follow balanced scheduling
• Calculate individual latency for each load based on the amount of instruction-

level parallelism available to cover the load’s latency

• Schedule the load considering the surrounding code

• Distribute the available parallelism across the loads in the block
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Computing Delays for Load Operations

for each load operation l in the block

delay(l) = 1

for each operation i in D

let Di be the nodes and edges in D independent of i

for each connected component C of Di do

find the maximal number of loads N on any path through C

for each load operation l in C

delay(l) = delay(l) + delay(i)/N
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Other Considerations

• Algorithm assumes only one operation is issued per cycle
• The algorithm should consider one operation per functional unit per cycle

• Some operations can execute on multiple functional units while 
others cannot
• Schedule the more-constrained units before the less-constrained units

• Operands computed in predecessor blocks may not be available 
during the first cycle at block boundaries
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Other Priority Measures for Tie Breaking

• A node’s rank is the number of immediate successors it has in 𝐷
• Encourages the scheduler to pursue many distinct paths through 𝐷, similar to 

a breadth-first approach

• A node’s rank is the total number of descendants it has in 𝐷

• A node’s rank is equal to its 𝑑𝑒𝑙𝑎𝑦
• Schedules long-latency operations as soon as possible

• A node’s rank is equal to the number of operands for which this 
operation is the last use
• Moves last uses closer to their definitions to decrease demand for registers
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Example of Forward List Scheduling
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Opcode loadI lshift add addI cmp store

Latency 1 1 2 1 1 4

cbr1

cmp2 store15 store25 store35 store45 store55

loadI18 lshift8 loadI48loadI38loadI28

add17 add27 add37 add47 addI6



Example of Forward List Scheduling
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Opcode loadI lshift add addI cmp store

Latency 1 1 2 1 1 4

cbr1

cmp2 store15 store25 store35 store45 store55

loadI18 lshift8 loadI48loadI38loadI28
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Example of Forward List Scheduling
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Opcode loadI lshift add addI cmp store

Latency 1 1 2 1 1 4

cbr1

cmp2 store15 store25 store35 store45 store55

loadI18 lshift8 loadI48loadI38loadI28

add17 add27 add37 add47 addI6

Integer Integer Memory

1 loadI1 lshift

2 loadI2 loadI3

3 loadI4 add1

4 add2 add3

5 add4 addI store1

6 cmp store2

7 store3

8 store4

9 store5

10

11

12

13 cbr



Example of Backward List Scheduling
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Opcode loadI lshift add addI cmp store

Latency 1 1 2 1 1 4

cbr1

cmp2 store15 store25 store35 store45 store55

loadI18 lshift8 loadI48loadI38loadI28

add17 add27 add37 add47 addI6
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Example of Backward List Scheduling
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Opcode loadI lshift add addI cmp store

Latency 1 1 2 1 1 4

cbr1

cmp2 store15 store25 store35 store45 store55

loadI18 lshift8 loadI48loadI38loadI28

add17 add27 add37 add47 addI6

Integer Integer Memory

1 loadI4

2 addI lshift

3 add4 loadI3

4 add3 loadI2 store5

5 add2 loadI1 store4

6 add1 store3

7 store2

8 store1

9

10

11 cmp

12 cbr



Does OOO Eliminate the Need for Instruction 
Scheduling?
• Many modern processors support out-of-order (OOO) execution

• The dynamically-scheduled processor maintains a portion of the dependence 
graph at run time to identify when each instruction can execute

• When can OOO processor improve on a static schedule? 
• Run-time information is more precise than the assumptions made by the 

scheduler 
• An operand at a block boundary is available before its worst-case time
• More precise estimates for variable-latency operations
• Can precisely identify load-store dependences because the hardware knows actual 

runtime addresses while a static scheduler does not

• The OOO processor might issue an operation earlier than its position in the 
static schedule
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Does OOO Eliminate the Need for Instruction 
Scheduling?
• OOO execution does not eliminate the need for instruction scheduling 

because the lookahead window is finite
• Consider a string of 100 integer instructions followed by 100 floating-point 

instructions and a lookahead window of 50 instructions It may, however, 

• OOO execution helps the compiler by improving good, but 
nonoptimal, schedules
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Regional Scheduling
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Extending Beyond BBs

• Limiting analysis to BBs is simple and convenient

• However, extending the window of scheduling beyond BBs can 
improve the code quality
• Span can be multiple BBs in a procedure

• Goal is to increase code that can be scheduled together

• Almost all proposed ideas use the list scheduling algorithm at its core
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Extended BB (EBB)

• An extended BB is a set of BBs 
{𝐵1, 𝐵2, … , 𝐵𝑛} such that 
• 𝐵1 has multiple predecessors

• Any other block 𝐵𝑖 has exactly one 
predecessor 𝐵𝑗 in the EBB
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Scheduling EBBs

• Compilers process paths in an EBB for scheduling 
• For example, {𝐵1, 𝐵2, 𝐵4} and {𝐵1, 𝐵3}

• Challenges
• Compiler must reason about any code motion performed on one path on 

other paths
• Compiler can move 𝑐 from 𝐵1 to 𝐵2 to improve the performance of the first path
• Compiler must compensate, insert 𝑐 into 𝐵3

• Similarly, a compiler might move 𝑓 from 𝐵2 to 𝐵1
• This can lead to erroneous output in the path {𝐵1, 𝐵3}
• Either rename the output of 𝑓 or insert an undo operation

• Scheduler aims to mitigate the number and frequency of 
compensation code
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Trace Scheduling

• Goal is to construct maximal-
length acyclic paths through a 
CFG 
• Applies the list scheduling 

algorithm to those paths or traces

• Trace is an acyclic path through 
the CFG

• Compiler aims to schedule hot 
paths before cold paths
• Requires access to profile

information
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Trace Scheduling

• Selecting edges to form a trace can be greedy
• For example, a possible trace is {𝐵1, 𝐵2, 𝐵4, 𝐵6}

• Trace construction stops when it runs of edges or there is a loop-closing 
branch 

• Scheduler applies the list scheduling algorithm to traces
• Schedules a trace, and moves on to the next most-frequently executed trace

• Note there may be entry points in the middle of a trace
• Blocks may have multiple predecessors

• Compilers have to be careful performing code motion across such blocks
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Scheduling with BB Cloning

• Join or merge BBs limit 
extending EBB or trace 
scheduling

• Cloning BBs allows creating
longer join-free paths

• After cloning, the entire graph 
on the right is an EBB
• Schedule {𝐵1, 𝐵2, 𝐵4, 𝐵6} if hot 

(say)
• Then, can schedule either

𝐵5, 𝐵
′
6 or {𝐵3, 𝐵

′
5, 𝐵

′′
6}
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