CS 335: Instruction
Scheduling

Swarnendu Biswas

Semester 2019-2020-11
CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Sensitivity to Instruction Order

* Order of instruction execution has a significant effect on program
performance
 Different operations have different latencies
* Same operation may have different latencies

* Instruction scheduling is the task of ordering the operations to make
effective use of processor resources

* Input to the instruction scheduler is an unordered or partially ordered list of
operations in say the target machine’s assembly language

e Output is an order on the list of operations

Instruction Scheduling

Original | Instruction Reordered
code Scheduler S

* Compiler reorders operations in the compiled code in an attempt to
decrease its running time

e Scheduler assumes a fixed set of operations and does not rewrite code
* May add nops to maintain dependence

e Scheduler assumes a fixed allocation of values to registers
* May rename registers but does not change allocation decisions
* Should avoid increasing the lifetime of values since it may lead to register spills

CS 335 Swarnendu Biswas

Overlapping Instructions

* Processors overlap instruction execution to make use of a finite set of
functional units

* Processor stalls an instruction until its operands are available
* Scheduler can reorder instructions to minimize the number of stalls

* Processor can also continue executing the instruction with wrong
operands
* Will need support for re-execution when correct operands are available

* Need to maintain sufficient distance between the definition and the uses of
the operand

Issuing Instructions

* Many processors can issue multiple operations per cycle

* Superscalar processor can issue distinct operations to multiple distinct
functional units in a single cycle

* VLIW processor issue an operation for each functional unit in each cycle

e Superscalar processors
* Monitor a small window in the instruction stream
* Choose operations that can execute on available units
* Assign ready operations to functional units.

* Window size is relatively larger for out-of-order superscalar
processors

Instruction Scheduling

* A processor that relies on the compiler to insert NOPs for correctness
is called a statically scheduled processor

* Scheduler checks the availability of functional units

* A processor that uses interlocks to ensure correctness is a
dynamically scheduled processor

* An interlock is a hardware mechanism to detect premature issue and
introduces a delay

» Scheduler checks availability of operands

Instruction Scheduling Example

e | Operaions

1
4
5
8

10
13
15
18
20

LOAD Rjgp, @a = R,
ADD R4y, R{=> R4
LOAD Rygrp, @b = R,
MUL Ry, R, = R,
LOAD Rypp, @c = R,
MUL R, R, > R;
LOAD Rygrp, @d = R,
MUL R, R, ® R;
STORE R = R,pp, @a

O N o ul B W N -

11

LOAD Rypp, @a = R4
LOAD Rypp, @b = R,
LOAD Rygrp, @c = R;
ADD Ry, R = R,
MUL R4, R, > R;
LOAD Rygpp, @d = R,
MUL R4, R3 > R;
MUL R4, R, > R;
STORE R; = R,pp, @a

Dependence Graph

* Given a basic block B, its dependence graphis D = (N, E)
* D has a node for each operation in B
* An edge in D connects two nodes n; and n,, if n, uses the result of n,
* Edges represent flow of values
* D is also called a precedence graph

* Each node n has two attributes
* Operation type — functional unit on which the operation must execute
* Delay — number of cycles to complete

Example of a Dependence Graph

co U1 B~ =

10
13
15
18
20

LOAD Rpgp, @a = R,
ADD R{,R{=> R4
LOAD Rpgpp, @b = R,
MUL R, R, = R,
LOAD Rypp, @c = R,
MUL R4, R, > R,
LOAD Rypp, @d > R,
MUL R4, R, > R,
STORE Ry = Rypp, @a

o Q

> 0| —+~ MO O O

Nodes with no predecessorsJ

d are called leaves
)
b C
\/
d e
f g

Nodes with no successors
are called roots

Instruction Scheduling

* A schedule S maps each node n € N to a nonnegative integer that
denotes the cycle in which it should be issued

* An instruction i can have multiple operations
 Operations are denoted by {n | S(n) ==}
* Constraints

i. S(n) =1, with at least one operation n’ such that S(n') = 1
ii. If (ny,n,) € E,thenS(ny) + delay(n,) < S(n,)

iii. Each instruction contains no more operations of each type than the target
machine can issue in a cycle

Instruction Scheduling

e Given a well-formed schedule, the length
of the schedule is the cycle number in
which the last operation completes

* Assuming first instruction is issued at cycle
1, schedule length is L(S) =
meal\%((S (n) + delay(n))
n

* A schedule S; is time optimal if L(S;) <
L(S;)) VS #S;

* Critical path is the longest latency path
through D

a13
|

blO C12
\/

elO

Instruction Scheduling

* ais on the critical path, so we should
schedule a first

e c can be the next, since it now lies on the
longest path

e Better to schedule e before b

Possible schedule = ???

|
blO C12
\/
d9 elO
~_
f7 g8
\/
h5

Instruction Scheduling

* ais on the critical path, so we should
schedule a first

e c can be the next, since it now lies on the
longest path

e Better to schedule e before b

Possible schedule = acebdgfhi

|
blO C12
\/
d9 elO
~_
f7 g8
\/
h5

Instruction Scheduling

© N o u B~ W NN R

[HEY
[N

LOAD Rpgp, @a = R,
LOAD Rjgp, @b =R,
LOAD Rypp, @c = R,
ADD R{,R{=> R4
MUL R4, R, ® R,
LOAD Rpgp, @d = R,
MUL R4, Rz > R,
MUL R4, R, ® R,
STORE R; = R rp, @a

d

> —+H 0 O T 0

Possible schedule = acebdgfhi?

Instruction Scheduling

© N o u B~ W NN R

[HEY
[N

LOAD Rpgp, @a = R,
LOAD Rjgp, @b =R,
LOAD Rypp, @c = R,
ADD R{,R{=> R4
MUL R4, R, ® R,
LOAD Rpgp, @d = R,
MUL R4, Rz > R,
MUL R4, R, ® R,
STORE R{ = Ryrp, @a

d

> —+H 0 O T 0

Possible schedule = acebdgfhi?

Both c and e define R,, and d uses R,
Compiler cannot move e before d
without renaming

Dealing with Antidependence

* Operation x is antidependent on operation y if x precedes y and y
defines a value used in x

* Reversing their order of execution could cause x to compute a different value

* How can a scheduler can deal with antidependences?

* |dentify antidependences and respect the constraints in the generated
schedule
* Restricts the number of possible schedules a compiler can generate
 Rename values to avoid antidependences
* Increasing variable lifetime can lead to register spills

Limitations in Scheduling

» Adjacent code has dependences EEEEE T

that cannot be avoid during 1 LOAD Ryrp, @2 = Ry
scheduling 4 MUL Ry, Ry = R
6 MUL Ry, R, = R,
8 MUL Ry, R, = R,
* Earlier passes may refactor the 10 MUL Ry, R; = R,
code to expose parallelism 12 STORE R; = Rapp, @X

° (aZ)ZX (a2)2
e Can proceed in parallel if there are
more than one multiplication unit

CS 335 Swarnendu Biswas

Challenges in Scheduling

* Scheduler needs to find a mapping between one or more operations
and the clock cycle when they can start

* A choice influences all reachable nodes

* Instruction scheduling is NP-complete

List Scheduling

List Scheduling

* Greedy, heuristic-based approach to schedule operations in a basic
block

 Steps in applying list scheduling
i. Rename values to avoid antidependences
ii. Build a dependence graph D
iii. Assign priorities to each operation
iv. Iteratively select an operation for scheduling

Steps in List Scheduling

i. Rename values to avoid antidependences (optional step)
* Each definition receives a unique name
* Allows the scheduler more flexibility in identifying schedules

ii. Build a dependence graph D
» Scheduler traverses the block from bottom to top
* Each node represents a new value
e Each edge is annotated with the latency of the current operation

Steps in List Scheduling

iii. Assign priorities to each operation

* Scheduler computes several different scores for each node
* Length of the longest latency-weighted path from the node to a root in D

* Priorities are used for ordering and breaking ties

iv. Iteratively select an operation for scheduling
 Startin the first cycle for the basic block
* At each cycle, choose as many operations as possible to issue

List Scheduling Algorithm

cycle =1 if Ready # ¢
Ready = {leaves of D } Ready = Ready — op
Active = {¢} S(op) = cycle
while Ready U Active # ¢ add op to Active
for each op € Active cycle = cycle + 1

if S(op) + delay(op) < cycle
Active = Active — op
for each successor s of op
if s is Ready
Ready = Ready Us

List Scheduling Algorithm

* At each time step
* the algorithm accounts for operations completed in the previous cycle
* schedules an operation for the current cycle
* increments cycle

* Block-ending jump must be scheduled such that it does not modify
the program counter
* Two-cycle branch must not be scheduled earlier than the penultimate cycle

* |f i is the block-ending branch, it cannot be scheduled earlier than cycle
L(S)+ 1 —delay(i)

Thoughts on the List Scheduling Algorithm

* If |[Ready| = 1, then the generated schedule must be optimal

* If |[Ready| > 1, then operation with highest priority should be
chosen

Scheduling Operations with Variable Delays

 Memory operations often have variable delays

* Assuming worst-case delay can keep the processor idle
* Assuming best-case delay will require stalls on a cache miss

* Compilers follow balanced scheduling

* Calculate individual latency for each load based on the amount of instruction-
level parallelism available to cover the load’s latency

* Schedule the load considering the surrounding code
e Distribute the available parallelism across the loads in the block

Computing Delays for Load Operations

for each load operation 1 in the block
delay(l) =1
for each operation 1 in D
let D; be the nodes and edges 1n D independent of 1

for each connected component C of D; do
find the maximal number of loads N on any path through C

for each load operation 1 in C
delay(l) = delay(l) + delay(i)/N

Other Considerations

* Algorithm assumes only one operation is issued per cycle
* The algorithm should consider one operation per functional unit per cycle

* Some operations can execute on multiple functional units while
others cannot
e Schedule the more-constrained units before the less-constrained units

* Operands computed in predecessor blocks may not be available
during the first cycle at block boundaries

Other Priority Measures for Tie Breaking

e A node’s rank is the number of immediate successors it has in D

* Encourages the scheduler to pursue many distinct paths through D, similar to
a breadth-first approach

A node’s rank is the total number of descendants it has in D

* Anode’s rank is equal to its delay
* Schedules long-latency operations as soon as possible

* A node’s rank is equal to the number of operands for which this
operation is the last use
* Moves last uses closer to their definitions to decrease demand for registers

Example of Forward List Scheduling

loadI,® lshifts loadI,?8 loadI,? loadI,®
add,’ add,’ add,’ add,’ addI®
| | | |
cmp? store,’ store,” sto‘;re35 store,’ storecg’
\/
\ cbr?

Opcode loadl Ishift add addl cmp store

 Opcode
1 1 2 1 1 4

Example of Forward List Scheduling
| Integer | Integer | Memory

1
loadI,® lshift? loadI,?® loadI,® loadI,® I
2 |
3 |
|
add,’ add,’ add,’ add,’ addI® 4 |
|
5 I
v 6 l
cmp? store,> store,’ storey® store,’ storeg® l
\/ 7
cbr?

load] Ishift add addl cmp store

CS 335 Swarnendu Biswas

Example of Forward List Scheduling

loadI,® lshift? loadI,?® loadI,®8 loadI,®
NN T
add,’ add,’ add,’ add,’ addI®
| | | |
cmp? store;’ store,’ stg;ef store,’ storeg®
\/
cbr?

loadl Ishift add add| cmp store

O 00 N o o &~ W N B

g T S Y
w N RS

loadI,

loadlI,

loadI,
add,
add,

cmp

cbr

lshift

loadI,
add,
add,
addI

store,
store,
store,
store,

stores

Example of Backward List Scheduling

loadI,® lshift? loadI,?® loadI,®8 loadI,®
NN T
add,’ add,’ add,’ add,’ addI®
| | | |
cmp? store;’ store,’ stg;ef store,’ storeg®
\/
cbr?

load] Ishift add addl cmp store emp

————————»

Example of Backward List Scheduling

loadI,® lshift? loadI,?® loadI,®8 loadI,®

NN T

add,” add,’ add,’ add,’ addIé

R e N

cmp? store;’ store,’ storey® store,’ storeg®

SN

cbrl

loadl Ishift add add| cmp store

O 00 N o uu B~ W N

10
11
12

loadl,
addl
add,
add,
add,
add;

cmp

cbr

Ishift
loadl;
loadl,

loadl,

store.
store,
store,
store,

store,

Does OO0 Eliminate the Need for Instruction
Scheduling?

* Many modern processors support out-of-order (OOQ) execution

* The dynamically-scheduled processor maintains a portion of the dependence
graph at run time to identify when each instruction can execute

* When can OOO processor improve on a static schedule?

* Run-time information is more precise than the assumptions made by the
scheduler
* An operand at a block boundary is available before its worst-case time
* More precise estimates for variable-latency operations

e Can precisely identify load-store dependences because the hardware knows actual
runtime addresses while a static scheduler does not

* The OOO processor might issue an operation earlier than its position in the
static schedule

Does OO0 Eliminate the Need for Instruction
Scheduling?

* OO0 execution does not eliminate the need for instruction scheduling
because the lookahead window is finite
* Consider a string of 100 integer instructions followed by 100 floating-point
instructions and a lookahead window of 50 instructions It may, however,

* 000 execution helps the compiler by improving good, but
nonoptimal, schedules

Regional Scheduling

Extending Beyond BBs

* Limiting analysis to BBs is simple and convenient

* However, extending the window of scheduling beyond BBs can
improve the code quality

e Span can be multiple BBs in a procedure
* Goalis to increase code that can be scheduled together

* Almost all proposed ideas use the list scheduling algorithm at its core

Extended BB (EBB)

* An extended BB is a set of BBs
{B1,B>, ..., B} such that
* B, has multiple predecessors

* Any other block B; has exactly one
predecessor B; in the EBB

Scheduling EBBs

* Compilers process paths in an EBB for scheduling
* For example, {B1, By, B,} and {B{, B3}

* Challenges

* Compiler must reason about any code motion performed on one path on
other paths
* Compiler can move ¢ from B4 to B, to improve the performance of the first path
* Compiler must compensate, insert ¢ into By
* Similarly, a compiler might move f from B, to B,
* This can lead to erroneous output in the path {B;, B3}
* Either rename the output of f or insert an undo operation

* Scheduler aims to mitigate the number and frequency of
compensation code

Trace Scheduling

* Goal is to construct maximal-
length acyclic paths through a
CFG

* Applies the list scheduling
algorithm to those paths or traces

* Trace is an acyclic path through
the CFG

* Compiler aims to schedule hot
paths before cold paths

e Requires access to profile
information

Trace Scheduling

 Selecting edges to form a trace can be greedy
* For example, a possible trace is {B;, By, B4, B¢}
* Trace construction stops when it runs of edges or there is a loop-closing
branch
* Scheduler applies the list scheduling algorithm to traces
* Schedules a trace, and moves on to the next most-frequently executed trace

* Note there may be entry points in the middle of a trace
* Blocks may have multiple predecessors
* Compilers have to be careful performing code motion across such blocks

Scheduling with BB Cloning

* Join or merge BBs limit
extending EBB or trace
scheduling

* Cloning BBs allows creating
longer join-free paths

» After cloning, the entire graph
on the right is an EBB
* Schedule {B4, By, B4, B} if hot
(say)

 Then, can schedule either
{Bs,B’¢} or {B3,B’s,B" ¢}

References

» K. Cooper and L. Torczon. Engineering a Compiler, 2"9 edition, Chapter 12.

